Sprawdzenie maksymalnej średnicy prętów na podstawie [N2] z uzupełnieniami zawartymi w [30]

Na podstawie przykładu 6.9 (przypadek zwyczajny, decyduje $s_{r \text {,max }}$) naprężenia w zbrojeniu rozciąganym wynoszą: $\sigma_{s}=302,2 \mathrm{MPa}$, efektywny stopień zbrojenia $\rho_{p, \text { eff }}=0,0188$.

Wysokość użyteczna przekroju $d=h-a_{2}=250-(25+12 / 2)=219 \mathrm{~mm}$.
Maksymalna średnica prętów ϕ_{s}^{*} odczytana z tablicy 6.9 dla naprężeń $\sigma_{s}=302,2 \mathrm{MPa}$ i granicznej szerokości rysy równej $0,3 \mathrm{~mm}$ wynosi około 11 mm .

$$
h-d=250-219=31>0,1 h=0,1 \cdot 250=25 \mathrm{~mm} .
$$

Maksymalna średnica, przy której można uznać, że rysy będą ograniczone do szerokości $0,3 \mathrm{~mm}$ wynosi zatem (przyjęto $k_{c}=0,4, h_{c r}=0,5 h$,:

$$
\phi_{s}=\phi_{s}^{*} \frac{f_{c t, \text { eff }}}{2,9} \frac{5 k_{c} h_{c r}}{h}=11 \cdot \frac{2,9}{2,9} \frac{5 \cdot 0,4 \cdot 0,5 \cdot 250}{250}=11,0 \mathrm{~mm} .
$$

Zastosowana średnica prętów $\phi=12 \mathrm{~mm}$ jest większa od $\phi_{s}=11 \mathrm{~mm}$, więc należy sprawdzić szerokość rys. Szerokość rys obliczona w przykładzie 6.9 wynosi $0,215 \mathrm{~mm}$ i jest mniejsza od granicznej wartości $0,3 \mathrm{~mm}$.

Dla otuliny 15 mm naprężenia w stali (na podstawie arkusza obliczeniowego nr 1) wynoszą $\sigma_{s}=287,7 \mathrm{MPa}$. Maksymalna średnica prętów ϕ_{s}^{*} odczytana z tablicy 6.9 dla granicznej szerokości rysy równej $0,3 \mathrm{~mm}$ wynosi około $11,6 \mathrm{~mm}$.

Wysokość użyteczna przekroju $d=h-a_{1}=250-(15+12 / 2)=229 \mathrm{~mm}$.

$$
h-d=250-229=21<0,1 h=0,1 \cdot 250=25 \mathrm{~mm} .
$$

Maksymalna średnica, przy której można uznać, że rysy będą ograniczone do szerokości $0,3 \mathrm{~mm}$ wynosi zatem (przyjęto $k_{c}=0,4, h_{c r}=0,5 h$):

$$
\phi_{s}=\phi_{s}^{*} \frac{f_{c t, \text { eff }}}{2,9} \frac{k_{c} h_{c r}}{2(h-d)}=11,6 \cdot \frac{2,9}{2,9} \cdot \frac{0,4 \cdot 0,5 \cdot 250}{2 \cdot 21}=13,8 \mathrm{~mm} .
$$

Zatem można uznać, że jeżeli zastosuje się otulinę 15 mm , to szerokość będzie ograniczona do $0,3 \mathrm{~mm}$. Szerokość rys odczytana z arkusza nr 1 wynosi $0,202 \mathrm{~mm}$.

Sprawdzenie maksymalnej średnicy prętów metodą dwóch naprężeń [35]

Naprężenia $f_{p} \mathrm{i} \sigma_{s m}$:

$$
\begin{aligned}
& \qquad f_{p}=\frac{k f_{c t, \text { eff }}}{\rho_{p, \text { eff }}}=\frac{1,0 \cdot 2,9}{0,0188}=154,2 \mathrm{MPa}, \\
& \sigma_{s m}
\end{aligned}=\max \left\{0,6 \sigma_{s} ; \sigma_{s}-0,4\left(f_{p}+19\right)\right\}=\max \{0,6 \cdot 302,2 ; 302,2-0,4 \cdot(154,2+19)\},
$$

Wówczas:

$$
\begin{aligned}
\phi^{*} & =\frac{8,53}{f_{p}}\left(\frac{E_{s} w_{k}}{\sigma_{s m}}-3,4 c\right)=\frac{8,53}{154,2} \cdot\left(\frac{210000 \cdot 0,03}{232,9}-3,4 \cdot 2,5\right) \\
& =0,0553 \cdot 18,55=1,03 \mathrm{~cm}=10,3 \mathrm{~mm} .
\end{aligned}
$$

Maksymalna średnica prętów zbrojenia

$$
\phi_{\max }=\frac{k f_{c t, e f f}}{2,9 k_{2}} \phi^{*}=\frac{1,0 \cdot 2,9}{2,9 \cdot 0,5} \cdot 10,3=20,6 \mathrm{~mm}>\phi=12 \mathrm{~mm} .
$$

Zastosowana średnica prętów $\phi=12 \mathrm{~mm}$ przy ograniczeniu zarysowania do $0,3 \mathrm{~mm}$ jest odpowiednia. Szerokość rys obliczona w przykładzie 6.9 wynosi $0,215 \mathrm{~mm}$ i jest mniejsza od granicznej wartości $0,3 \mathrm{~mm}$.

Przykład 6.11. Zbrojenie minimalne ze względu na nośność i zarysowanie

Obliczyć minimalne zbrojenie przekroju pokazanego na rysunku 6.46 w obszarze momentu ujemnego. Przyjęto blachę Cofraplus 60, stal zbrojeniową B500SP, $f_{s d}=435 \mathrm{MPa}$, odległość od środka ciężkości zbrojenia do krawędzi rozciąganej $a_{2}=2,5 \mathrm{~cm}$, beton $\mathrm{C} 30 / 37, f_{c t m}=2,9 \mathrm{MPa}$, graniczna szerokość rys $w_{k}=0,4 \mathrm{~mm}$. Przyjęto $n_{L}=9,03$.

Rys. 6.46. Przekrój przez strop

a. Płyta o grubości 300 mm

Minimalne zbrojenie ze względu na kruche zniszczenie na podstawie [N2]

$$
A_{s, \text { min, ULS }}=\max \left\{\begin{array}{l}
0,26 \frac{f_{c t m}}{f_{y k}} b_{t} d_{s}=0,26 \cdot \frac{2,9}{500} \cdot 100 \cdot 27,5=4,15 \mathrm{~cm}^{2} / \mathrm{m} \\
0,0013 b_{t} d_{s}=0,0013 \cdot 100 \cdot 27,5=3,57 \mathrm{~cm}^{2} / \mathrm{m}
\end{array}\right.
$$

Minimalne pole powierzchni zbrojenia ze względu na kruche zniszczenie wynosi zatem $A_{s, \text { min,ULS }}=4,15 \mathrm{~cm}^{2} / \mathrm{m}$. Pole to można wyznaczyć dokładniej, korzystając z arkusza kalkulacyjnego nr 1 . W tym celu należy odczytać moment rysujący i dla takiego momentu zginającego dobrać zbrojenie, przy którym naprężenia w zbrojeniu będą równe $f_{y k}=500 \mathrm{MPa}$. Korzystając z arkusza kalkulacyjnego nr 1, otrzymano $M_{c r}=35,5 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ i stosując zbrojenie $\phi 12$ co 405 mm (czyli $A_{s, \text { min,ULS }}=2,79 \mathrm{~cm}^{2} / \mathrm{m}$), otrzymano $\sigma_{s 2}=f_{y k}=500 \mathrm{MPa}$.

